【河北工业大学案例】采用荷兰Chemtrix玻璃微通道反应器Kiloflow光催化案例—2,6-二氯甲苯氧化溴化制备2,6-苄溴
【背景介绍】
2,6-二氯苄溴是合成生物活性分子的重要中间体,如功能化[1,4]-噻嗪、4,6-二芳基嘧啶-2(1H)-酮和2-苄氧基苯甲酰胺(图1)。1-3 2,6-二氯苄溴通常是由2,6-二氯甲苯与Br2在自由基引发剂存在下或在光照下进行苄基溴化反应得到的。4,5用Br2进行苄基溴化存在一些缺点,每个Br2中都会有一个Br生成副产物HBr,导致Br的利用率很低;而且Br2的毒性和高蒸气压使其在运输和储存方面都存在危险。
6因此,开发了许多试剂和方案来替代Br2,以实现选择性苄基溴化,如H2O2/HBr/NBS,7 BBr3和8 NBS/SiCl4,9还有各种氧化溴化体系,例如NaBrO3/NaHSO3,10 NaBrO3/KBr-/H+,11 KBr/Oxone,12 NaNO2/KBr/HCl13和 HBr/H2O2。14-17其中最值得推荐的氧化溴化体系是HBr/H2O2,因为HBr和H2O2的成本低,Br利用率为100%,H2O是唯一的副产物,这避免了其他氧化剂存在的一些环境问题。18
传统上,氧化溴化反应是在间歇式反应器中进行的,14,17但是间歇式反应器存在许多缺点,例如光的辐射距离短,反应效率低,特别是在大规模生产时有爆炸的风险。
近年来,随着科学技术的发展,微通道反应器技术在化学转化方面取得了重大进展。19-22与传统的间歇式反应器相比,微通道反应器具有传质和传热效率高、比表面积大、安全性高和操作性好等特点,不仅能精确控制反应条件,获得高选择性的目标产物,而且易于放大。
实际上,微通道反应器因其上述优点以及反应物更容易接触到光的优势,在光催化化学领域得到了广泛的应用,包括光氧化催化、23 β-二羰基化合物、24丙烯醛与糖基自由基的共轭加成、25杂环的三氟甲基化、26苯氧化制备苯酚27、光引发的苄基氯化28和脂环化合物氯化。29,30并且微型反应器31-34也被应用于光照下使用Br2或HBr/H2O2进行的苄基溴化反应。另一方面,间歇式反应器中,原位生成的Br2会催化H2O2严重分解,而在微通道反应器中反应物的接触时间较短,所以预计在微通道反应器中用HBr/H2O2进行的氧化溴化反应将会大大减少H2O2的分解。35
河北工业大学的张月成教授课题组在荷兰Chemtrix玻璃微通道反应器Kiloflow中,光催化下,以HBr为溴源,H2O2为氧化剂,2,6-二氯甲苯氧化苄基溴化反应制备2,6-二氯苄溴,此过程安全环保,经济高效。并考察了反应温度、反应物料摩尔比、停留时间、光强以及物料浓度等因素的影响,得到了2,6-二氯甲苯制备2,6-二氯苄溴的最佳反应.
一、 【实验部分】
2.1实验试剂和仪器
所有试剂均为分析级,直接使用,无需进一步纯化。 2,6-二氯甲苯 (DCT)、1,2-二氯乙烷、过氧化氢水溶液 (H2O2, 30.0 wt.%) 和氢溴酸 (HBr, 47.0 wt.%) 由上海泰坦化学试剂合作公司提供。 去离子水是我们实验室自己配制的。
在来自 Chemtrix B.V. (Echt, The Netherlands) 的 Kiloflow 型连续流微通道反应器中进行光照射下2,6-二氯甲苯的氧化苄基溴化反应。光源由3个5W的光板和2个36W的灯带组成,发出波长为435-445nm的蓝光。通过将光板和光条放置在距离微通道反应器的玻璃反应板5mm处来照亮反应混合物。在配备有Shim-packVP-ODS C18柱的Shimadzu高效液相色谱仪(HPLC)上分析反应液。
2.2 实验过程
在一个典型的实验中,将22.7g(0.141mol)2,6-二氯甲苯和73.0 mL1,2-二氯乙烷依次加入一个锥形瓶中,得到溶液A。在另一个锥形瓶中加入26.0 g 30.0wt.%的H2O2,然后加入75.2 mL去离子水稀释,得到溶液B。然后,在第三个锥形瓶中加入40.0 g 47.0wt.%的HBr,然后加入75.1mL的去离子水稀释,得到溶液C。
如图2所示,溶液A、B和C分别由三个10mL的进液泵输送,溶液B和C首先通过一个三通阀混合,并在第二个三通阀中与溶液A混合。混合物最后进入微通道反应器中,在给定的温度和压力下完成反应。反应液从反应器中流出,在冷阱中低温淬灭(0℃)。在整个过程中,反应器的压力由入口处的压力表监测,并由出口处的背压阀控制。
反应完成后,反应混合物用高效液相色谱进行分析。首先,用高效液相色谱法(HPLC)建立标准曲线,用于定量分析2,6-二氯甲苯、2,6-二氯苄溴和2,6-二氯苯甲酸。2,6-二氯甲苯的转化率以及2,6-二氯苄溴和2,6-二氯苯甲酸的选择性是用以下公式(1)-(3)计算的:
二、 【实验结果与讨论】
3.1 温度对反应的影响
对于在微通道反应器中,使用特定波长和强度的光照射2,6-二氯甲苯的氧化苄基溴化反应,反应温度是影响反应的关键因素。因此首先研究了反应温度对反应的影响。经测定,反应主要产物为2,6-二氯苄溴和2,6-二氯苯甲酸,没有观察到芳基取代产物,表明在该反应条件下,微通道反应器对苄基取代反应的选择性很好。如图3所示,随着温度从30℃增加到70 ℃,2,6-二氯甲苯的转化率从15.5%增加到67.8%,2,6-二氯苄溴的选择性从68.7%增加到75.3%。随着反应温度在70℃以上的进一步提高,2,6-二氯甲苯的转化率和2,6-二氯苄溴的选择性都略有增加。同时,在所有情况下,2,6-二氯苯甲酸的选择性几乎保持在10.2%左右。
反应条件:87W蓝光,HBr:H2O2:2,6-二氯甲苯(摩尔比)=1.3:1.3:1;溶液A:15.0wt.%的2,6-二氯甲苯(0.093 mol)溶于73.0 mL1,2-二氯乙烷,1.47 mL/min;溶液B:12.5wt.%HBr水溶液, 1.3 mL/min;溶液C: 5.76 wt.% 的H2O2 水溶液, 1.3 mL/min; 停留时间:5.82 min;反应压力:0.8 MPa。
DCT:2,6-二氯甲苯
DCBB:2,6-二氯苄溴
DCBA:2,6-二氯苯甲酸
3.2 HBr和H2O2用量对反应的影响
接下来,作者研究了HBr: H2O2:2,6-二氯甲苯的摩尔比对苄基氧化溴化反应的影响。如图4所示,2,6-二氯甲苯的转化率随着HBr:H2O2:2,6-二氯甲苯摩尔比的增加而增加,在1.96:1.96:1时达到95.2%,但2,6-二氯苄溴的选择性随着HBr:H2O2:2,6-二氯甲苯摩尔比的增加而降低;随着其摩尔比的进一步增加,2,6-二氯甲苯的转化率和2,6-二氯苄溴的选择性都略有增加;2,6-二氯苯甲酸的选择性随着HBr: H2O2:2,6-二氯甲苯摩尔比的变化而略有变化,保持在10.4%左右。
为了在较低的HBr和H2O2消耗量下获得更高产量的2,6-二氯苄溴,最佳的HBr:H2O2:2,6-二氯甲苯摩尔比被确定为1.5:1.5:1。在这种情况下,2,6-二氯甲苯的转化率为76.1%,2,6-二氯苄溴的选择性为73.8%。以上结果表明,在微通道反应器中用H2O2/HBr进行氧化溴化反应比在间歇式反应器中进行更有优势,因为H2O2的消耗量更低。在间歇式反应器中进行类似的氧化溴化时,H2O2与HBr的最佳摩尔比约为2:1。35
反应条件: 87 W 蓝光 ;溶液A: 15.0 wt.% 的2,6-二氯甲苯(0.093 mol) 溶于73.0 mL 1,2-二氯乙烷;溶液 B: 12.5 wt.% HBr水溶液; 溶液 C: 5.76 wt.% H2O2 水溶液; 停留时间:5.83 min;反应压力:0.8 MPa; 反应温度:70℃。
DCT:2,6-二氯甲苯
DCBB:2,6-二氯苄溴
DCBA:2,6-二氯苯甲酸
3.3停留时间对反应的影响
在微通道反应器中,反应物的停留时间是影响反应的另一个关键因素,它也间接反映了光催化反应中光对反应物的照射时间。因此,在 70℃和 HBr:H2O2:2,6-二氯甲苯摩尔比为 1.5:1.5:1 时,研究了停留时间对反应的影响。如图 5 所示,2,6-二氯甲苯的转化率最初随着停留时间的增加而增加,在停留时间为5.88 min 时,转化率达到最大值 76.1%,然后随着停留时间的延长而缓慢下降,直到停留时间达到 9.43 min时,转化率急剧下降。
2,6-二氯甲苯转化率在停留时间为9.43min以上时急剧下降,可能是因为在微通道反应器中,水相和有机相在较长停留时间下混合不均匀。 2,6-二氯苄溴的选择性随着停留时间的增加而缓慢增加,在停留时间为5.88 min时达到最大值73.8%,然后随着停留时间的进一步延长而略有下降。与其他情况类似,2,6-二氯苯甲酸的选择性随停留时间略有变化,约为12.7%。因此,停留时间确定为 5.88 min。
反应条件:87W蓝光; HBr: H2O2:2,6-二氯甲苯(摩尔比)= 1.5:1.5:1;溶液A: 15.0 wt.% 2,6-二氯甲苯(0.093 mol) 溶于73.0 mL 1,2-二氯乙烷; 溶液B:12.5wt.%的HBr水溶液; 溶液C:5.76wt.%的H2O2水溶液;反应压力:0.8 MPa;反应温度:70 ℃。
DCT:2,6-二氯甲苯
DCBB:2,6-二氯苄溴
DCBA:2,6-二氯苯甲酸